
3 Numerical Modelling and
Simulation

3.1 INTRODUCTION
Modern silicon technologies, based on highly complex systems, require rigorous
methods to predict the behaviour of electronic devices and the computational ap-
proach becomes essential. In the past decades, the applied mathematics branch
called numerical computation has closely followed the evolution of information tech-
nologies, refining its techniques according to the complexity of the systems to be
described and benefiting from the upgrade in the computational hardware perfor-
mances. In this view, one of the most significant achievements is represented by the
introduction of the Finite Element (FE) analysis, based on a particular solving strat-
egy for partial differential equations (PDE), which has been developed from the 30s
of the last century.

FE analysis is a mathematical tool able to offer a considerable saving of compu-
tational costs and the advantage of setting a proper approximation level with respect
to the exact solution. The user can choose the optimal balance between the precision
of the result and the time required to process data.

The important ingredients of any physical modelling of semiconductor de-
vices are presented in the following sections. Before focusing our attention on the
Drift-Diffusion (DD) framework, one of the most commonly used techniques both
in the industry and in the R&D field, the microscopic description of charge carriers
transport, as well as its numerical treatment, will be provided. To this aim, how these
models are discretized before being implemented in a calculator will be briefly de-
scribed. Finally, the case study of a UFSD-based detector is presented at the end of
the chapter to show how theory applies to real life. In this section, standard carrier
statistics and transport is coupled with advanced semiconductor physics (quantum
models and radiation effects) to highlight the properties and issues of simulating the
electrical behaviour and the operating performances of a real device.

3.2 PHYSICAL MODELLING OF SEMICONDUCTOR DEVICES
As anticipated in the introduction, the ingredients of physics-based modelling are
now introduced. The first ingredient is the relationship between the electric field
and the charge density, described by the Poisson’s equation. The second ingredient
is how the charge carriers, i.e., electrons and holes, react to the applied field or, in
other words, the carrier dynamics. This step needs a dedicated transport model (TM).
Here, two TMs models are detailed: the Boltzmann Transport Equation (BTE) and
the Drift-Diffusion (DD).
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46 An Introduction to Ultra-Fast Silicon Detectors

3.2.1 ELECTROMAGNETIC MODEL: THE POISSON’S EQUATION

The Poisson’s equation connects the electric field acting within a semiconductor
material E and the overall charge density ρ (the sum of the densities of positive,
negative and fixed charges):

d2Ux

dx2 = q
ρ

ε
, (3.1)

where Ux is the potential energy along an hypothetical direction x and ε is the di-
electric constant of the semiconductor. To make Eq. (3.1) explicit with respect to the
electric field, it is sufficient to remember that the potential energy and the electro-
static potential ϕ are linked by

Ux =−qϕx (3.2)

and that
Ex =−

dϕx

dx
, (3.3)

so it can be written
dEx

dx
=

ρ

ε
, (3.4)

which is the most common way to represent the Poisson’s equation for semiconduc-
tors.

Depending on the system to be modelled, Eq. (3.4) has to be rewritten as a func-
tion of two or three spatial variables, transforming the derivative into a divergence
and the density ρ into a distribution of charges ρ(r) in the generic space vector r.
In the following section of this chapter, it will be shown how to write Eq. (3.1) in a
more general form and, especially, how to solve it within a FE framework.

3.2.2 TRANSPORT MODELS

The simplest Transport Model suitable for electronic devices modelling in the semi-
classical approach is the so-called Boltzmann Transport Equation (BTE). Written
for a generic distribution function f (k,r, t), which describes a population of charge
carriers, the BTE is

∂ f
∂ t

+v(k) ·∇r f +
F
h̄
·∇k f =

d f
dt

∣∣∣∣
coll

, (3.5)

where v(k) is the fermion group velocity. In the equation above, the term

F
(

n, p,ϕ,∇,
∂

∂ t

)
(3.6)

is a hypothetical force acting on the system, written as a function of the electron-hole
carrier densities n and p, the electrostatic potential ϕ , and the gradient and derivative
operators.
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The last term of the BTE is called collision term, and describes the dynamics of
the perturbation induced by the force F. Under the relaxation time approximation, it
can be written

d f
dt

∣∣∣∣
coll

=
| f (k,r, t)− f0(k)|

τ(k)
, (3.7)

where f0(k) is the distribution function at equilibrium and τ(k) the time required to
restore such equilibrium (relax) after the initial perturbation. Following the statistical
theory,

f (k,r, t) ∆k ∆r ∆t (3.8)

represents the number of electrons/holes having momentum p= h̄k, at position r and
time t. Similarly, integrating Eq. (3.8) with respect to r, the number of electrons/holes
having momentum p = h̄k at time t is found and, finally, by integrating with respect
to k, the number of carriers at position r and time t is determined. Introducing now
an opportune function λ (k) such that

λ (k) =
N

∑
j=0

a jk j , (3.9)

with

a0 = 0 , a1 = h̄k , a2 =
h̄2k2

2m∗
, . . . (3.10)

then a set of N moments M j of the distribution f having the general form

M j =
∫

λ j(k) f (k,r, t) dk (3.11)

are found. These moments assume a noticeable relevance since they provide informa-
tion about the properties of the system. For instance, applying the 0th-order moment
M0 to the BTE written for the electrons, the following equation

∂n(r, t)
∂ t

+∇r (〈vn〉n(r, t)) =
dn(r, t)

dt

∣∣∣∣
coll

(3.12)

is obtained, which represents the continuity equation (i.e., at the same time, a charge
conservation law and a transport equation for electrons), since

M0 =
∫

f (k,r, t) dk = n(r, t) . (3.13)

Note that, in order to ensure that Eq. (3.12) is valid, it is assumed that

〈vn〉=
∫

v(k) f (k,r, t)dk∫
f (k,r, t)dk

(3.14)

is the average electron velocity or, to simplify, the electron drift velocity vn. Since
the electron current density can be expressed as

Jn =−qvn n(r, t) , (3.15)
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and assuming that
dn(r, t)

dt

∣∣∣∣
coll

=−Un (r, t) , (3.16)

where the term Un will be defined shortly, the BTE for electrons becomes

∂n(r, t)
∂ t

=
1
q

∇r Jn (r, t)−Un (r, t) (3.17)

and, similarly for holes

∂ p(r, t)
∂ t

=−1
q

∇r Jp (r, t)−Up (r, t) . (3.18)

What has been done so far is to start from the generic expression of the BTE and,
introducing the method of moments, rewrite it in a form more suitable to describe the
transport of free charges in semiconductors. Such a procedure can be improved by
adding a couple of other considerations. First of all, recall that in solid-state physics
the current density of charge carriers Jn,p has a contribution driven by the electric
field (called drift current) and a second component due to the gradient of charge
density (the diffusion part). So, in one space dimension, it can be written as

Jn = q µn nE +qDn
∂n
∂x

Jp = q µp pE −qDp
∂ p
∂x

(3.19)

where µn,p = vn,p/E are the electron-hole mobilities and

Dn,p = µn,p kB T (3.20)

the Einstein diffusion coefficients, functions of the material-dependent mobilities
µn,p, the Boltzmann constant kB and the absolute temperature T . Finally, the term
Un,p is the so-called net generation-recombination (GR) rate, i.e., the net number
of interband energy transitions given by the electrons relaxed into the valence band
(recombination rate Rn) minus the electrons promoted into the conduction band (gen-
eration rate Gn) – or viceversa for the holes – per unit volume per second. Then, if
the BTE for electrons and holes are combined with Eq. (3.4), the following system
is obtained

∂n
∂ t

=
1
q

∂Jn

∂x
− (Rn−Gn)

∂ p
∂ t

=−1
q

∂Jp

∂x
− (Rp−Gp)

∂E

∂x
=

ρ

ε

(3.21)

which represents the so-called Drift-Diffusion (DD) model (written for clarity in one
space dimension). The first two equations, deriving from the standard BTE, are the
electron-hole continuity equations, while the last one is the Poisson’s equation.
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It is interesting to highlight that in the so-called lifetime approximation, equiva-
lent to the relaxation time approximation for the BTE collision term, it is possible to
write

Un = Rn−Gn

≈ n−n0

τn
=

n′

τn

(3.22)

and

Up = Rp−Gp

≈ p− p0

τp
=

p′

τp
,

(3.23)

where n0 and p0 are the carrier densities at equilibrium, n′ and p′ the excess carrier
densities (out of equilibrium) and τn,p the (doping- and temperature-dependent) re-
combination lifetimes, that change according to the semiconductor material and to
the particular GR process considered. These assumptions – and, thus, the entire DD
model – are acceptable only if the system dynamics is sufficiently slower than the
lifetimes τn,p, as always occurs in traditional semiconductors devices. A more de-
tailed description of the possible GR mechanisms in silicon sensors will be provided
in the following sections of this chapter.

3.3 NUMERICAL TREATMENT OF MODELS
The equation of the DD model needs to be modified in order to be implemented in
a computer program. The appropriate tool to solve a transport equation is the partial
differential equation (PDE). The complexity of the system in Eq. (3.21), two non-
linear and one linear equation in four variables, has to be reduced. The usual strategy
is to discretize the PDE both in the space and time domains, and transform them into
ordinary differential equations (ODE). To achieve this target, the device geometry is
divided into a grid of nodes and the dynamic transitions are treated as a sequence of
quasi-stationary states. These transitions can be solved with the discretized version
of the DD equations, i.e., in each node of the grid, and where all physical quantities
are expressed as functions of their nodal values.

At the end of this section, properties of the solving method used to calculate
the discretized DD model will be shown, providing information about the possible
numerical issues.

3.3.1 METHODS OF SPATIAL DISCRETIZATION

The schemes commonly used to discretize the system are essentially two: the Finite
Element (FE) and Finite Differences (FD). To explore the main differences between
the FE and FD schemes, the Poisson’s equation is used as an example. In its generic
form, the Poisson’s equation is written as

∇
2
rϕ = f (r) , (3.24)
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where f (r) is the known term of this PDE. The potential needs to be expressed as a
set of basis functions defined in each j-th element of the space such that

ϕ ∼∑
j

φ j w j(r) , (3.25)

where φ j is the nodal value of the potential and w j(r) are opportune weighting func-
tions. So, the Poisson’s equation can be written as

∑
j

φ j ∇
2
rw j(r) = f (r) . (3.26)

Now, Eq. (3.26) can be integrated on a given volume of space, called Ω, obtaining

∑
j

φ j

∫
Ω

wk(r)∇
2
rw j(r)dr =

∫
Ω

wk(r) f (r)dr. (3.27)

This is a matrix equation in the form

A ·Φ = f , (3.28)

where
A jk =

∫
Ω

wk(r)∇
2
rw j(r)dr (3.29)

are the elements of the sparse matrix A and where Φ and f are the column vector
of, respectively, the discretized potential and the known term. Now, assuming that Ω

is the triangular region defined by three nearby nodes of the grid, Eq. (3.28) becomes
the discretized Poisson’s equation within the FE scheme, where the unit-elements are
the triangular control regions.

Similarly, the grid (with a certain criteria) can be divided into boxes with area
S j that are surrounding each j-th node. If γ j is the path around the box, the Gauss
theorem can be exploited to write Eq. (3.24) as∫

S j

∇ · (∇ϕ)dr =
∮
γ j

∇ϕ ·nd`=
∫
S j

f (r)dr . (3.30)

By applying the 1st-order Taylor expansion, the following expression is obtained∮
γ j

∂ϕ

∂n
d`' ∑

sides
`i

ϕ j−ϕi

di j
= S j f (r j) , (3.31)

where `i denotes the length of the side of the box around the jth-node, located
between the adjacent nodes j and i, di j is the distance between these two nodes,
S j the area of the jth-box and n is a unit vector normal to the box side. Notice that
Eq. (3.31) is, as in the previous case, a matrix equation

A ·Φ = S · f , (3.32)
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where S is a diagonal matrix. The relation in (3.32) is the discretized version of the
Poisson’s equation written according to the FD scheme (that, in 2D, is usually called
Finite Boxes (FB) method). The core of this scheme, and the reason for its name, is
in the term ϕ j−ϕi, which takes into account the potential difference between two
adjacent nodes.

Figure 3.1 Bidimensional representation of left, the Finite Element (FE) and right, Finite
Boxes (FB) discretization schemes. In the first case, the characteristic element (control region)
to which all the physical quantities refer to, is the triangle described by three nearby nodes,
whereas in the latter case is the box around a node.

As it was done for the Poisson’s equation, the FB method can be exploited to
discretize also the continuity equations. Before applying the Gauss theorem, one has
to note that both the continuity equations included in the DD model have the form

∂ f
∂ t

+∇ ·F = s , (3.33)

where f and F are, respectively, a scalar and a vector unknown and where s is a
(scalar) source term.

The domain of the box, having area S and perimeter Γ, can now be integrated
over. The Gauss theorem applied to Eq. (3.33) yields to

∂

∂ t

∫
S j

f dS+
∮
Γ j

F ·n dΓ =
∫
S j

sdS , (3.34)

that becomes
d f j(t)

dt
S j + ∑

sides
`i〈F ·n〉i ≈ s j S j . (3.35)

The (3.35) applied to the electron continuity equation gives

dn j(t)
dt

S j−
1
q ∑

i
`i j〈Jn ·n〉i j =−Un, j S j , (3.36)
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where i is a index to identify all the possible box sides around the node j. Most of
the terms appearing in Eq. (3.36) can quite easily be managed. What may induce
ambiguity is the mean value of (Jn ·n) carried out over all the neighboring nodes.
To proceed further, the twofold nature of the current density (drift and diffusion
components) needs to be considered. In this way, the second term on the left-hand
side of Eq. (3.36), except for the sum, is rewritten as

1
q
〈Jn ·n〉i j =−〈n(r, t)µn∇rϕ ·n〉i j + 〈Dn∇rn(r, t) ·n〉i j . (3.37)

Now two assumptions are made. (i) Between the nodes i and j the potential ϕ is a lin-
ear function with values, respectively, ϕi and ϕ j. This means that, along that segment,
the electric field Ei j = (ϕ j −ϕi)/di j can be considered a constant. (ii) The current
densities are constant between the two nodes (i.e., 〈Jn ·n〉i j = Ji j is a constant).

For this reason, Eq. (3.37) becomes

1
q
〈Jn ·n〉i j ≈−n(r, t)µn(Ei j)

ϕ j−ϕi

di j
+Dn(Ei j)

∂n(r, t)
∂ r

=
Ji j

q
, (3.38)

and the electron continuity equation is

dn j(t)
dt

S j +∑
i
`i j n(r, t)µn(Ei j)

ϕ j−ϕi

di j
−∑

i
`i j Dn(Ei j)

∂n(r, t)
∂ r

=−Un, j S j , (3.39)

with the unknowns n, ϕ and E (a dual equation also holds for holes).
Since the solution of Eq. (3.39) may generate stability issues, several approaches

have been developed in the past years. One of the most robust and suitable methods
(but not the only one) for the implementation in a software program is the so-called
Scharfetter-Gummel (SG) solving scheme. Being the stability mainly due to the be-
haviour of the function n(r, t) (as well as of the hole density), the SG approach makes
some particular assumptions on the carrier density and its trend between the nodes
that allows reducing the continuity equations to the form

dn j(t)
dt

SG
≈ ∑

i

Dn(Ei j)

`i j S j

[
n j(t)B(∆ϕ)−ni(t)B(−∆ϕ)

]
−Un, j

dp j(t)
dt

SG
≈ −∑

i

Dp(Ei j)

`i j S j

[
p j(t)B(∆ϕ)− pi(t)B(−∆ϕ)

]
−Up, j

(3.40)

where
B(∆ϕ) =

∆ϕ

exp(∆ϕ)−1
(3.41)

is a Bernoulli function and where ∆ϕ ≡ ϕ j−ϕi.
At the end of the calculations, a formalism that allows converting all the continu-

ous physical quantities into nodal values, which depend on the discretization scheme
chosen to simplify the system, has been obtained. Equation (3.40) differs from its
original form since the PDEs are now a set of ODEs. As stated in the introduction of
the present chapter, this represents the ideal scenario for the implementation of the
transport model into a numerical solver.
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3.3.2 THE ITERATIVE SOLUTION OF THE EQUATIONS

A physical model described in analytical form cannot be handled easily by a numer-
ical solver: it needs to be rewritten in a discretized formalism. This paragraph shows
this procedure for the Poisson’s equation, while leaving the treatment of the whole
DD model to the reader’s interest. The simplest expression of the Poisson’s equation
is written as

∇
2
ϕ(r) =−q

ε
[n(ϕ(r))+NA(ϕ(r))− p(ϕ(r))−ND(ϕ(r))] . (3.42)

Two assumptions are necessary: (i) the effective densities of donors and acceptors
(ND and NA) are kept constant with respect to the electrostatic potential (and coordi-
nate r); (ii) the potential can be written as

qϕ(r)≡ u(r) , (3.43)

where u(r) is a given analytical function.
It follows that, in one space dimension x, Eq. (3.42) becomes

d
dx

(
ε

du(x)
dx

)
= q2 [ND−NA + p(u(x))−n(u(x))] . (3.44)

Suppose now to evaluate Eq. (3.44) for the unknown u(x) only in a set of equally
spaced (N + 1) points xi, where i = 0, . . . ,N. First, one has to impose a solution at
the edges of the domain x0 and xN . These values are the boundary conditions (BC)
of the problem. With the BC set, the solution is restricted to only (N − 1) points.
Then, the Poisson’s equation is evaluated in a generic node xi through the finite
difference scheme, where the interval

[
xi−1/2 ; xi+1/2

]
was used as a control region

to perform the calculations. From what has been said, in xi it holds that

x
i+ 1

2∫
x

i− 1
2

d
dx

(
ε

du(x))
dx

)
dx = q2

x
i+ 1

2∫
x

i− 1
2

[ND−NA + p(u(x))−n(u(x))]dx . (3.45)

Thanks to the properties of definite integrals it follows

x
i+ 1

2∫
x

i− 1
2

d
dx

(
ε

du(x)
dx

)
dx = εx

i+ 1
2

du(x)
dx

∣∣∣∣
x

i+ 1
2

− εx
i− 1

2

du(x)
dx

∣∣∣∣
x

i− 1
2

= εx
i+ 1

2

u(x)(xi+1)−u(xi)

∆x
− εx

i− 1
2

u(xi)−u(xi−1)

∆x
,

(3.46)

where, in the second line, the definition of difference quotient has been used to eval-
uate the two derivatives. Assuming now that N is sufficiently high to have a dense
set of nodes, then u(x) can be approximated by a linear function around the point xi
and, more in general, within the whole control volume.
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This hypothesis leads to

q2

x
i+ 1

2∫
x

i− 1
2

[ND−NA + p−n]≈ q2 [ND−NA + p−n]xi
∆x , (3.47)

where ∆x is defined as the spacing between nodes (which is constant over the entire
domain x). Combining equations (3.46) and (3.47), a new discretized version of the
Poisson’s equation is obtained:

εx
i+ 1

2
u(xi+1)−

(
εx

i+ 1
2
+ εx

i− 1
2

u(xi)

)
+ εx

i− 1
2

u(xi−1)

−(∆x)2 q2 [ND−NA + p(u(xi))−n(u(xi))] = 0 ,
(3.48)

which has three unknowns: u(xi−1), u(xi), and u(xi+1).
The expression obtained is non-linear with respect to the unknowns since the

charge carriers n and p are, in turn, non-linear in the potential term. To solve this
equation in all the nodes, a numerical strategy that overcomes such an issue needs
to be applied. One of the most used formalism is the iterative Newton’s method.
Besides the BC, the Newton’s method also requires opportune Initial conditions (IC)
of the system. In this case, the charge neutrality law at equilibrium, consisting in

ND−NA + p(u(x))−n(u(x)) = 0 , (3.49)

can be chosen for this aim. Simplifying, for each node xi an equation of the form

fi(ui−1,ui,ui+1) = 0 , (3.50)

is found, where the notation has been relaxed such that now ui ≡ u(xi). The goal
of the Newton’s method is to provide an approximate solution of Eq. (3.50) starting
from the IC and through subsequent iterations k, each one having a guess solution
to be achieved within a certain tolerance. The iterative method requires a maximum
precision (∆u)max as input parameter (automatic or user-defined) and assumes, for
all nodes xi, that

uk = uk−1 +∆uk , (3.51)

with uk the solution at the kth-iteration and ∆uk the difference between two consecu-
tive outcomes. Here, ∆uk represents the progressive correction factor of the method
towards the final solution.

By applying the scheme (3.51) to the Eq. (3.50), the following expression is
obtained:

fi(uk
i−1,u

k
i ,u

k
i+1) = fi

(
uk−1

i−1 +∆uk
i−1,u

k−1
i +∆uk

i ,u
k−1
i+1 +∆uk

i+1

)
= 0 , (3.52)

which is, finally, a system of linear equations in u where each solution at k depends on
the solution found at the (k−1)th iteration. At the step k = 1 the value u1 is a function
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of u0, the so-called initial guess of the iterative scheme. Each solver estimates this
term through different techniques, depending on the application field. The final form
of the Poisson’s equation is obtained by rewriting Eq. (3.52) as a first-order Taylor
expansion:

fi

(
uk−1

i−1 +∆uk
i−1,u

k−1
i +∆uk

i ,u
k−1
i+1 +∆uk

i+1

)
≈ fi(uk

i−1,u
k
i ,u

k
i+1)+

+
∂ fi

∂ui−1

∣∣∣∣
uk

i−1

∆uk
i−1 +

∂ fi

∂ui

∣∣∣∣
uk

i

∆uk
i +

∂ fi

∂ui+1

∣∣∣∣
uk

i+1

∆uk
i+1 = 0 .

(3.53)

Equation (3.53) can be cast into matrix form:

• • 0
• • •
• • •

. . . . . . . . .
• • •

• • •
0 • •




∆uk


=−


f


(3.54)

which is composed by a tri-diagonal matrix and the column vectors ∆uk and f, that
are, respectively, the correction and the residual vector.

The iterative method proceeds until at least one of the following requirements is
satisfied:

∥∥∆uk
∥∥< δ or ‖f‖< δ , where δ ≡ (∆u)max is the tolerance of the Newton’s

method. For any given xi and k, if a solution is found within a finite number of
iterations, then the method converges, otherwise the procedure does not converge.

Reason determining a non-converging system are (not exhaustive): (i) inadequate
boundary conditions, (ii) poor discretization scheme (extremely dense or coarse
mesh nodes), (iii) too small tolerance, and (iv) low computational power or (v) badly
conditioned problems (for instance, due to a high number of charges or a large do-
main to be simulated).

In order to minimize the risk that non-convergence occurs, the Russian math-
ematician B. N. Delaunay developed in 1934 a robust triangulation procedure that
makes use of non-obtuse triangles [13]. In combination with a particular domain tes-
sellation that identifies the finite boxes by connecting the three bisector lines of each
Delaunay triangle, a discretization scheme providing an even more stable solution,
particularly suitable for simulating semiconductor devices, is found.

3.4 UFSD IMPLEMENTATION AND MODELLING
The aim of this section is to present the simulation of a UFSD-based particle detector
and, at the same time, to show a real application of the concepts exposed in the pre-
vious paragraphs. Given the complexity of a silicon detector, only a model based on
a numerical approach provides a reliable description. In this regard, the Technology
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Computer-Aided Design (TCAD) is the most used solution. The TCAD implemen-
tation of the DD model requires a set of mathematical handles in order to solve the
equations through the iterative method, for example the tolerance and the maximum
number of iterations. In addition, for any structure to be modelled, all the geometri-
cal and physical properties have to be taken into account. The materials and all the
topological elements necessary to correctly impose the BC (as in the case of contacts
or external edges), need to be defined. This step includes the definition of doping
implants and profiles, and the presence of structural defects in the lattice having rele-
vance in the physics of carrier transport, such as energy traps or fixed charges due to
some fabrication processes. TCAD also allows simulating ion implantation, thermal
annealing, crystal growth or material deposition. These features can provide more
realistic scenarios in the event that such technological details can make a difference.
Besides the electromagnetic and transport equations just derived, it is necessary to
activate in the simulations the models of all physics processes deemed essential to
the operation of the device. These are the processes that can alter the current flow in
the device under test and, for such reason, must be implemented into the DD model
as appropriate GR terms.

So far, only the core of the numerical modelling has been described. The fol-
lowing step is to define the target of the simulation (for example a voltage ramp or
transient phenomena). The space domain is divided into a grid and the discretized
version of the DD equations is solved in each node of the grid, where all the physical
quantities are expressed as functions of their nodal values. A solid procedure is to use
variable node spacing: where the relevant quantities or their gradients are expected to
be particularly high, a finer mesh is necessary to allow the numerical solving. In case
of transients, the time domain has to be discretized too so that a sweep of a physical
quantity or the simulation of a time-dependent process is treated as a sequence of
quasi-stationary states. As for the space domain, the density of steps must properly
follow the time scale of the process: the quasi-stationary approximation is based on
the assumption that the interval between two steps must be significantly shorter than
the time of the transient.

Once the simulation domains are set up, the user selects the tolerance, the maxi-
mum number of iterations as well as all the BC and IC of the problem. Then the tool
introduces in each node the initial guess for the Poisson’s equation at equilibrium
(t = 0), which is the electrostatic potential ϕ ′0. After solving the Poisson’s equation,
a numerical estimation ϕ0 of the potential is obtained. This solution can be used as
the initial guess to solve the whole DD system in the first time step, t = 1. Using the
iterative scheme, TCAD estimates all the DD unknowns (charge densities and po-
tential and, in turn, also the electric field and current densities), until the simulation
goal is achieved. This happens only if the algorithm converges for each time step.

3.4.1 GENERATION-RECOMBINATION MECHANISMS

The physical processes occurring in silicon sensors are mostly defined in terms of a
GR rate, representing the net number of generated or recombined electrons/holes,
depending on which of the two competing processes is dominating. Before
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introducing the physics used to model the UFSD-based silicon detectors, the min-
imum settings of any simulation is briefly discussed here.

First, all the energy transitions between the valence and conduction band that
are assisted by those lattice impurities (like defects of dopants) acting as en-
ergy traps have to be considered. This kind of processes goes under the name of
Shockley-Read-Hall (SRH) GR mechanisms [120], from the name of the scientists
who developed this formalism. Out of equilibrium, the net GR rates Un,p are the al-
gebraic sum of the terms (Rn,p−Gn,p). The statistical nature of the emission and
capture processes is defined by introducing the capture and emission coefficients for
electrons and holes cn,p and en,p. Both terms are a constant property (in s−1) of a
given trapping process. Thus, the SRH recombination rates (in cm−3s−1) is defined
as

Rn = cn Nt (1− f (Et)) n

Rp = cp Nt f (Et) p
(3.55)

where Nt is the total number of SRH trap states, Et its energy, f (Et) the probability
that a trap with energy Et is occupied, and 1− f (Et) the probability to find that trap
unoccupied.

Symmetrically, the generation rates (in cm−3s−1) are

Gn = en Nt f (Et)

Gp = ep Nt (1− f (Et))
(3.56)

being the recombination a capture process of an electron coming from the conduc-
tion band and the generation an emission that excites an electron from the trap state
to the conduction band (see Fig. 3.2). It can be demonstrated that, in steady-state
conditions, the electron and hole net rates are equal, giving

cn Nt
[
(1− f (Et)) n− f (Et)n0 (EF)

]
= cp Nt

[
f (Et) p−(1− f (Et)) p0 (EF)

]
(3.57)

where n0 (EF) and p0 (EF) are the equilibrium electron-hole concentrations when the
trap has energy Et ≡ EF (with EF the Fermi level). The solution to this equation is

f (Et) =
cn n+ cp p0 (EF)

cn (n+n0 (EF))+ cp (p+ p0 (EF))
. (3.58)

Combining equations (3.57) and (3.58), the net rates are obtained:

Un =Up =
n p−n2

i
τp (n+n0 (EF))+ τn (p+ p0 (EF))

, (3.59)

where the mass action law

n p = n0 (EF) p0 (EF) = n2
i (3.60)

was used, being ni the intrinsic carrier concentration, and with the assumption that

τn,p =
1

cn,p Nt
(3.61)

are the electron-hole lifetimes.
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The formula written in Eq. (3.59) represents the most used expression of the
net SRH generation-recombination rate. In order to be included in the DD problem,
it must be plugged into the right-hand side of both continuity equations and then
self-consistently solved with the Poisson’s equation.

Figure 3.2 Band diagrams showing three different processes: (a) electron emission from
a trap state into the conduction band (generation); (b) electron capture (recombination); (c)
band-to-band (1) and trap-assisted (2) tunneling (generation) mechanisms in a reversely biased
pn junction. Labels EC, EV, and Et represent the conduction band, valence band, and trap
energy, respectively.

The other important family of GR processes is represented by the tunneling
mechanisms. They differ from the SRH ones by the fact that tunneling is a transi-
tion in space and not (necessarily) in energy. Again, trap-assisted tunneling processes
(TAT) are found, starting or finishing with a trap capture/emission, or direct band-to-
band tunneling processes (BTBT), taking place without any intermediate level. They
may also occur in UFSD-based detectors, when the band bending far from the equi-
librium determines a distance encompassing the conduction and valence band edges
which is comparable to the wavelength of carriers, or when the presence of traps is
such that this path is physically reduced, even with lower applied field. For this kind
of mechanisms, net rates have the form [88, 89]

UTAT =
n p−n2

i

τp(E )

(
n+ni e

Et−EF,i
kBT

)
+ τn(E )

(
p+ pi e

EF,i−Et
kBT

) (3.62)

and [93]
UBTBT = AE 2 e−B/E , (3.63)

where EF,i is the energy of the intrinsic Fermi level (at the mid-gap), and the co-
efficients A and B are material-dependent constants. Both these two latter expres-
sions represent theoretical models deriving from ab initio calculations based on,
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respectively, the multiphonon emission theory and on the k× p approximation of
bands [99].

Figure 3.3 Trend of the electron ionization coefficient αn as a function of the applied field,
according to the three different avalanche models and for two temperatures: (a) at T = 300 K
and (b) T = 240 K.

What characterizes the simulation of a UFSD device is the presence of the
gain layer. This implies, from the numerical standpoint, that a model describing the
avalanche of charge multiplication needs to be implemented. All the avalanche pro-
cesses usually have a net rate of the form

Uaval = αn(E )nvn +αp(E ) pvp , (3.64)

in which vn,p are the carrier drift velocities and αn,p(E ) are the so-called electron-
hole ionization coefficients (in cm−1), corresponding to the inverse of the mean free
path between two subsequent scattering events producing secondary charges. The
various models developed in the past years differ in the form of the ionization coeffi-
cients. Three formalisms, that follow the Chynoweth law [7], are normally employed.
The first one is the van Overstraeten-de Man model [133]:

α
vOv
n,p (E ) = γ AvOv

n,p exp

(
−γ

BvOv
n,p

E

)
, (3.65)

whose parameters are
AvOv

n = 7.030 ·105 cm−1

BvOv
n = 1.231 ·106 V/cm ,

(3.66)
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AvOv
p = 1.582 ·106 cm−1 (E below 4 ·105 V/cm)

BvOv
p = 2.036 ·106 V/cm (E below 4 ·105 V/cm)

AvOv
p = 6.710 ·105 cm−1 (E above 4 ·105 V/cm)

BvOv
p = 1.693 ·106 V/cm (E above 4 ·105 V/cm)

(3.67)

and

γ =
tanh

(
h̄ωop

2kB300K

)
tanh

(
h̄ωop
2kBT

) , (3.68)

with h̄ωop = 0.063 eV the optical phonon energy in silicon.
The second formalism, proposed by Y. Okuto and C.R. Crowell [105], reads

α
Oku
n,p (E ) =AOku

n,p

(
1+(T −300)COku

n,p

)
E

× exp

−(BOku
n,p
(
1+(T −300)DOku

n,p
)

E

)2
 ,

where
AOku

n = 0.426 V−1

AOku
p = 0.243 V−1

BOku
n = 4.81 ·105 V/cm

BOku
p = 6.53 ·105 V/cm

(3.69)

and
COku

n = 3.05 ·10−4 K−1

COku
p = 5.35 ·10−4 K−1

DOku
n = 6.86 ·10−4 K−1

DOku
p = 5.67 ·10−4 K−1 .

(3.70)

Finally, in the Massey model [100], the ionization coefficients are written as

α
Mas
n,p (E ) = AMas

n,p exp

(
−

BMas
n,p (T )

E

)
, (3.71)

with parameters
AMas

n = 4.43 ·105 cm−1

AMas
p = 1.13 ·106 cm−1 (3.72)

BMas
n (T ) =CMas

n +DMas
n ·T

BMas
p (T ) =CMas

p +DMas
p ·T ,

(3.73)
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CMas
n = 9.66 ·105 V/cm

CMas
p = 1.71 ·106 V/cm ,

(3.74)

and
DMas

n = 4.99 ·102 V cm−1 K−1

DMas
p = 1.09 ·103 V cm−1 K−1 .

(3.75)

The Okuto-Crowell and Massey models have a more pronounced de-
pendence of the ionization coefficients on temperature with respect to the
van Overstraeten-de Man one, as it can be observed by comparing the two plots of
Fig. 3.3.

3.4.2 RADIATION DAMAGE MODELLING

Typically, TCAD tools do not include built-in functions accounting for specific bulk
radiation damage models in silicon particle detectors. To overcome this fact, ad-hoc
models are added in the numerical framework. As seen in Section 1.3, a simple for-
mulation describing the production of acceptor-like defects and the deactivation of
acceptor dopants in UFSD-based detectors is [48]

NA(Φ,x) = geffΦ+NA(0,x)e−Φ·c(NA(0,x)) , (3.76)

where NA is the acceptor density in silicon, Φ is the fluence (in neq/cm2), geff a co-
efficient determining the effective acceptor states production, and c is an appropriate
function of the acceptor density before irradiation NA(0,x). This function indicates
how strongly radiation deactivates the acceptor atoms. Notice that NA is also a func-
tion of the position x inside the device. This means that both the acceptor removal
process, described by the last term of Eq. (3.76), and the function c change according
to the initial local density.

When performing parametric UFSD simulations where the unknowns are func-
tions of the irradiation level, Eq. (3.76) is implemented in the system in such a way
that the variable x maps each node of the discretization grid. To this aim, two steps
are required: first of all, the user has to recompute off-line all the p-type profiles
included in the detector according to the acceptor removal-creation law. Secondly,
this profile is discretized and plugged into the Poisson’s and continuity equations so
that the initial conditions can include the new doping when solving the DD model.
Usually, TCAD programs automatically adapt the profile discretization created by
the user to the mesh, which is a remarkable advantage.

A different procedure can be exploited to define radiation-induced trap states in
oxides or at interfaces between different materials, where the physical models gov-
erning their creation are typically simpler than Eq. (3.76). Since most of the TCAD
tools predispose the implementation of defect levels or bands, the user should in-
troduce their characteristic parameters (i.e., the energy and their eventual energy
distribution, in case of band states, the initial concentration and the scattering or GR
cross-sections with electrons and holes). If the experiments suggest that these de-
fects acting like traps vary with the fluence in terms of density or energy, the user
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needs to specify the parametric law through which the dependence takes place and
TCAD automatically recomputes them material-wise or region-wise by reason of
the radiation dose. One of the most robust frameworks in the literature describing
how surface damage behaves with fluence is the so-called Perugia model [28, 29],
a phenomenological set of parameters which introduces, besides the oxide charges,
also acceptor- and donor-like interface trap states. In particular, acceptors uniformly
occupy a band included between EC−0.56 eV and EC, while donors are distributed
in a band of width 0.6 eV, starting in correspondence of the valence band energy
EV. The concentrations of these defects, as well as of the charges in the oxide, are
fluence-dependent and may slightly change according to the foundry producing the
devices.

Figure 3.4 Trend of the electron mobility, left, and velocity in silicon right, as a function of
the parallel component (with respect to the drift lines) of the electric field, calculated analyti-
cally for four acceptor atoms concentrations NA, and at room temperature.

When the number of free charges changes due to an effective doping variation,
also two fundamental solid-state quantities driving the operation of a silicon device
change: the mobility and velocity of carriers (see, for instance, Ref. [3]). This ef-
fect is shown, for electrons, in Fig. 3.4, where the variation of both quantities as a
function of the electric field has been calculated considering a silicon sample homo-
geneously doped with four different acceptor concentrations NA. As one may see,
when NA increases, both quantities decrease for a given field. The curves here re-
ported have a trend well-known in the literature and refer to a specific doping level.
This means that they are valid locally, and the global behaviour of the whole device
is given by the contribution of all the different doping concentrations. Since the ef-
fective doping concentration also depends on the fluence, in order to simulate the
impact of radiation damaging on carrier mobility and velocity at the device-level, it
is necessary to compute the new physical quantities in each node of the discretiza-
tion mesh. Moreover, if the acceptor states generated by the radiation are explicitly
declared as traps, the solver will also treat them as further scattering centers in which
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calculate appropriate GR rates for trapping processes. This feature provides a more
realistic simulation, especially if the goal is to study in detail the signal shape due
to a charged particle passing through the detector. Generally, the radiation has the
overall effect of decreasing both mobility and velocity in UFSD-based detectors.

3.4.3 OTHER PHYSICAL MODELS

Due to the crucial role of dopants in the operation of silicon devices, two addi-
tional effects, both function of the doping concentration, may be required in UFSD
simulations. The first mechanism is the so-called band-gap narrowing, consisting
– as the name suggests – in a slight reduction of the forbidden energy gap of sil-
icon. This is due to the orbital overlapping of dopant atoms when they exceed
a critical density Ncrit. The energy bands generated by these new states may be
sufficiently shallow and wide (the band is larger than Ecrit) that they enter the conduc-
tion or valence band, with the result of narrowing the gap Eg. The gap reduction at
T = 300 K is of the order of few tens of meV when the dopants are about 1018 cm−3,
and slightly decreases with temperature. The higher the total doping density Ntot,
the larger the band-gap narrowing ∆Eg is. One of the most used formalisms is the
Slotboom model [95, 123, 124, 125], according to which

∆Eg = Ecrit

ln
(

Ntot

Ncrit

)
+

√
1
2
+

[
ln
(

Ntot

Ncrit

)]2
 , (3.77)

where, in silicon, Ncrit = 1.3 ·1017 cm−3 and Ecrit = 6.92 ·10−3 eV.
So far, we always referred to the dopants without distinguishing between im-

planted dose and effective doping concentration. The second important phenomenon
involving both the doping and the temperature is the capability of the dopant atoms
to provide free charges (negative for donors and positive for acceptors). Since the
ion implantation mostly generates interstitial impurities, a thermal process – called
annealing – is performed after the implantation to activate the dopants, that be-
come substitutional. During the annealing, besides the activation, also the lattice
repair takes place, since the ion implantation has locally induced dislocations, va-
cancies, point defects or stacking faults. As the annealing time or temperature be-
comes higher, the lattice rearranges and dopants diffuse. Usually, this process can
activate only a fraction of the nominal quantity of implanted atoms, which comes
from a delicate balance between applying the minimum energy needed to reduce
the lattice defects and keeping under control the diffusion of dopants. So, the ther-
mal cycles applied to the implanted sample must follow a precise recipe, where the
process temperature and duration have to be accurately determined. Even suppos-
ing to activate all the impurities, once the annealing has been performed, also the
operating temperature of the device, in principle, can act on the capability to pro-
vide free charge carriers. In fact, each dopant is characterized by a ionization energy,
given by the energy difference between the impurity level and the corresponding
band edge (the bottom of the conduction band for donors or the top of the valence
band for acceptors). When the thermal energy of the system – related to the device
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operating temperature – is lower than the ionization energy of dopants the result-
ing fraction of active impurity atoms participating to the conduction is lower than
100%. This effect is known as incomplete ionization and, besides the temperature,
depends also on the nominal concentration of dopants as well as on their chemical
nature.

Figure 3.5 Left: fraction of activated acceptors in silicon, calculated for boron and gallium at
equilibrium, as a function of the absolute temperature and for three different nominal acceptor
atoms concentrations. Right: fraction of activated acceptors, in a UFSD-based structure, with
gallium peak dose NA ∼ 5 ·1016 cm−3, plotted at 300 K and 253 K, as a function of the applied
reverse bias.

The left panel of Fig. 3.5 shows the fraction of the active acceptor dopants as a
function of the simulation temperature in p-type silicon for three different nominal
concentrations of boron and gallium. These calculations have been performed by
using the incomplete ionization law

NA,0(E ,T ) = NA

(
1+gA exp

(
EA−EF,p(E )

kB T

))
, (3.78)

which essentially is the Fermi-Dirac distribution for a population of acceptors (sim-
ilarly for donors) with ionization energy EA and density of active dopant atoms NA.
The terms EF,p and gA are, respectively, the quasi-Fermi level of holes and the degen-
eracy factor, an integer number changing according to the dopant element and equal
to 2 in case of gallium or boron. Equation (3.78) is applied until NA,0 is lower than
an effective concentration, above which we usually consider all dopants completely
ionized (in Si:B, such threshold value is 1022 cm−3). As the plot shows, the higher
the nominal concentration, the lower the ionization fraction at fixed temperature, for
both boron and gallium atoms.

Since the energy difference (EF,p−EV) changes with the applied field, it is also
possible to study how the activation evolves out of equilibrium with the external
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bias. To this purpose, a UFSD-like structure with a gallium-doped multiplication
layer has been implemented in TCAD. The right panel, (b), of Fig. 3.5 demonstrates
that, for a peak density ∼ 5 · 1016 cm−3 of the gallium implant and two different
temperatures, the acceptors are almost completely activated even at low bias, far
below the operating point of a standard UFSD-based detector.

3.5 SIMULATING ULTRA-FAST SILICON DETECTORS
In this section, several examples of Ultra-Fast Silicon Detectors simulations, and
their comparison with experimental data, will be presented. In the following, if
not otherwise specified, the TCAD results are obtained by solving the DD model,
which includes SRH generation-recombination, avalanche multiplication, BTBT,
TAT, band-gap narrowing and, when necessary, also proper radiation damage mod-
els.

The present section is divided into two paragraphs, the first one focuses on the
use of numerical simulations to replicate the detector leakage currents and internal
electric fields, while the second one on predicting the signal properties in both not
irradiated and irradiated detectors.

3.5.1 STATIC CHARACTERISTICS AND ELECTRIC FIELD

As seen when introducing the numerical implementation of physical models, the
sweep of an electrical quantity – e.g., the applied bias – corresponds to a sequence of
steps, each representing a quasi-stationary state. By solving the DD equations in the
whole space domain, it is possible to predict the trend of the total current versus the
applied potential, the I(V ) characteristics. In order to have realistic results for both
the leakage current and the breakdown voltage, the simulations must include as many
technological details as possible. Among them, the doping profiles (and also their
eventual lateral diffusion spreadings, when simulating in 2D-3D), the intergap defect
levels, the interface or oxide charges, and all the geometrical features characterizing
the device like the spacing among different implants and structures, or the thickness
of each layer.

Figure 3.6 shows in the left panel the comparison between the measured and sim-
ulated I(V ) characteristics of UFSD2 detectors, differing in type and dose of accep-
tors in the gain implant. The increase of the current is more and more pronounced
as the applied reverse voltage is raised due to the effect of charge multiplication.
This is a clear example of why a correct modelling of the avalanche mechanism
is so crucial in UFSD-based detectors. The right panel, instead, shows two C(V )
characteristics of two devices from the same UFSD production. The numerical cal-
culation matches well the experimental data and can accurately predict the deple-
tion voltage of both the gain layer and the active substrate. In these calculations, the
van Overstraeten–de Man model has been adopted and a quasi-1D simulation domain
has been used, having implemented just a silicon slice including the UFSD junction.
It is worth noting that this kind of numerical characterizations can be used not only
to adapt and calibrate the models and their parameters with respect to the specific
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Figure 3.6 Left: measured and simulated current-voltage I(V ) characteristics. Right: mea-
sured and simulated capacitance-voltage C(V ) characteristics. The curves are for several
UFSD2 samples having different dose (from 1.00 to 1.04) and species (gallium and boron)
of acceptors, with or without the co-implantation of carbon atoms. Symbols are laboratory
measurements, while lines are TCAD simulations [51, 54].

fabrication technology, but also – and especially – to predict the behaviour of the
detectors or, in other words, to design them. In this regard, it should be highlighted
that the I(V ) and C(V ) characteristics can help in defining the optimal gain implant
profile, for example through the study of breakdown voltages. The same can be said
for the gain curves, analyzed in the next section. Besides ensuring that the internal
field is well distributed at the periphery, the designer has to assure electrical isolation
between nearby active regions (gain implants) in correspondence of the inter-pad
regions.

Through a 2D or 3D implementation of the UFSD under study, it is possible to in-
fer important conclusions about the trend of the field and drift lines. Figure 3.7 shows
a simulated cross-sectional view of the inter-pad separating two adjacent active re-
gions (the p-gain implants). On both sides, there is a n-type implant, the junction
termination extension (JTE), while in the middle a p-stop structure is implanted. The
JTEs are used to confine the high fields produced in reverse bias by the gain layer,
and to prevent particles crossing the detector in the inter-pad from generating out-of-
time signals (see Section 2.8). The p-stop implants, instead, avoid that the electrons
inversion layer, due to the oxides and interface charges, short-circuits two adjacent
pads. These isolation structures determine – as it will become more clear in the next
paragraph – a performance drop because where there is no multiplication the detector
gain tends to be close to one. The calculated drift lines help in determining the width
of the no-gain region (see, for instance, the lines marked in white), since they allow
to predict which is the volume of silicon affected by the lower charge collection.
By properly tuning the technological parameters of the isolation implants (such as
dose and depth) it is possible to minimize their impact on the detector performance.
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Figure 3.7 Cross-section of a generic UFSD device in the inter-pad region between two
neighboring active areas, showing the electron drift lines and the electric field map (in grey
tones, where brighter areas have a higher field intensity). White lines are the external drift
lines enclosing the JTE implants. They highlight the collection volume of the p-gain.

Other considerations may also concern the chemical nature and thickness of the ox-
ide and passivation layers deposited on the top of the detector that, as well as the use
of proper interface defects, represents an important feature, especially for irradiated
devices.

Besides the implantation properties, simulations are also used to understand the
effects on the internal field distribution of two important key-elements: the oxide
thickness and the metal extensions on the device surface. Both concur in determin-
ing the device operation, either of the detector periphery, the cut-line region at the
physical edge of the device or between active areas. To predict their impact on the
breakdown voltage in correspondence of the isolation implants, the simulations pro-
posed in Fig. 3.8 have been performed. The figure reports, in the top part, two cross-
sections of the UFSD inter-pad region between active areas showing the field inten-
sity map (in grey tones) simulated at the breakdown voltage. Top left panel refers to a
structure with a very short metal overhang (with respect to the n+-contact) deposited
on top of the device, while the top right panel concerns the case of implementing a
field plate. Furthermore, the bottom panels (c) and (d) show the I(V ) characteristics
of the devices sketched, respectively, in subfigures (a) and (b). It’s is evident that the
use of a metal field plate fully covering the JTE implants is beneficial to keep under
control the electric field, which relaxes in silicon. Indeed, the region with the highest
field intensity moves from the junctions of the inter-pad implants to the oxide, in
correspondence with the metallization edge, allowing to reach the breakdown at a
voltage approximately 200 V higher.

Similar reasoning can be made if we want to characterize the field in the detector
periphery, for example, in order to design more robust protection structures which
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Figure 3.8 Top : simulated electric field intensity map (in grey tones - brighter areas have a
higher intensity) at the breakdown voltage Vbd, for two UFSD with different inter-pad regions,
short (a) or long (b) metal overhang (black pattern on the device surface). Bottom: correspond-
ing I(V ) curves.

allow higher breakdown voltages. Overall, TCAD simulation offers a powerful tool
to have relatively fast and reliable feedback on the physics driving each part of the
system.

3.5.2 TRANSIENT PROCESSES

This section deals with one of the most interesting and crucial targets of simulat-
ing UFSDs: the signal formation. The UFSD operation mechanism is based on the
multiplication by a certain gain factor (which is bias-dependent) of the primary e-h
pairs produced when a charged particle crosses the detector.

The numerical implementation consists of a time-dependent process during
which a heavy ion or a laser beam simulates a particle crossing the detector, with
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a custom trajectory and a well-defined energy released in the silicon lattice. Since
this procedure, in principle, holds for each particle in any kind of semiconductor,
it is important to characterize the detection process for a minimum ionizing parti-
cle (MIP) in silicon. A possible approach can be represented by the calibration of
the collected charges in a detector without the gain implant. Here, the absence of
multiplication allows to properly tune the energy released by the ion or the laser,
allowing to accurately describe the gain in UFSD at low applied voltages, i.e., be-
low the avalanche onset. Moreover, as explained in Section 2.10, after high values
of fluence, the electric field in a PIN can be raised so much that charge multiplica-
tion happens in the sensor bulk. This aspect is important in the simulation of heavily
irradiated UFSD.

Figure 3.9 shows two significant examples coming from the calibration cam-
paign carried out on two independent productions of PIN devices, one by CNM and
the second by HPK [36]. The number of charges has been obtained by integrating
the signal response in time, both in simulations and in the laboratory measurements.
In order to accurately fit the experimental data, the curves presented in the left panel
have been simulated by setting a MIP releasing an energy equivalent to the pro-
duction of ∼ 60 electron-hole pairs per crossed micron whereas in the right panel
we set ∼ 70 pairs. Both devices are irradiated (respectively, with neutrons at a flu-
ence of 3·1015 neq/cm2 and with pions at 1.5·1015 neq/cm2) so these simulations
also accounted for the phenomenological model written in Eq. (3.76) for the ac-
ceptor creation/deactivation with fluence. The plots indicate that both Massey and
van Overstraeten-de Man models are adequate in reproducing the collected charge
while the Okuto-Crowell predicts a higher bias value for the onset of the multiplica-
tion in the bulk.

Figure 3.9 Measured (symbols) and simulated (lines) number of collected charges in 50 µm-
thick PIN diodes manufactured by (a) CNM and (b) HPK. Simulations have been performed
using three different avalanche models [52, 54].
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It is worth stressing that, even with different formalism, the same result is ob-
tained simulating either the injection of heavy ions or that of an infrared laser beam
(for the wavelength 1064 nm) releasing the energy of 310 W/cm2. The main differ-
ence between the two numerical approaches is that the simulation with ions is more
suitable for a comparison with results obtained with particle while the simulation
with laser, allowing to define the illumination over a window with finite width, is
more appropriate with results obtained with the Transient Current Technique, TCT
(see Section 4.3 and Ref. [74]).

Figure 3.10 Measured and simulated gain value versus (a) bias and (b) temperature, in
50 µm-thick UFSDs with different gain implant dose (increasing from A to C) [52, 117].

Once the avalanche models have been optimized in terms of charges generated
without multiplication layer, the following step is to compare TCAD simulations and
measurements of the gain versus voltage G(V ) characteristics in UFSDs. The gain
is calculated as the ratio between the charges generated in the UFSD and those in
the corresponding PIN diode. For this reason, both devices have to be implemented
in the TCAD solver and subjected to the passage of a heavy ion or a laser beam.
Then, the gain curve is obtained by computing at each bias step the ratio of charges
QUFSD/QPIN.

In Fig. 3.10, results obtained with a 50 µm-thick UFSD are reported. The left
panel shows three different room temperature gain curves coming from devices with,
from left to right, a decreasing boron concentration in the gain implant. The right
panel refers to the device with the highest dose (as the leftmost G(V ) curve). These
plots demonstrate that the three multiplication models are highly competitive in re-
producing the gain curve of these structures at a fixed temperature and for all the
gain implant doses considered. For what concerns the gain increase with tempera-
ture, the Massey model is the most reliable. The slope of G(T ) is quite satisfactory
also for the van Overstraeten-de Man avalanche, while the Okuto model predicts a
much steeper dependence.



Numerical Modelling and Simulation 71

The left panel of Fig. 3.11 presents a second comparison between simulated and
measured G(V ) curves at room temperature, using sensors from the UFSD2 produc-
tion. The gain implant has been obtained with boron or gallium at different doses,
with/without the co-implantation of carbon atoms. For simplicity, only results ob-
tained with the van Overstraeten-de Man model have been reported. The plot on the
right panel reports the amplitude seen by two adjacent pads during a TCT position
scan (see Section 4.3) obtained – both experimentally and numerically – by moving
the spot of an infrared laser beam along the detector surface in correspondence of the
inter-pad region.

Figure 3.11 Left: measured and simulated (using the van Overstraeten-de Man avalanche)
room temperature gain curves in 50 µm-thick UFSD differing in the gain implant dopants.
Right: laser scan of the inter-pad region showing the normalized signal intensity versus the
position of the laser spot on the detector surface [51].

The next step in the UFSD simulation is the calibration of the parameters char-
acterizing the gain implant. Figure 3.12 shows the simulated effects of varying the
gain implant dose and depth. The left panel reports how the gain boron dose (normal-
ized at 1 µm) has to be scaled when implanting at different depths in order to have
gain G = 20 at the reverse bias V = 200 V. As explained in Section 2.1.1, when the
gain implant is deeper, the doping has to be decreased. The right panel of Fig. 3.12
shows how the gain changes varying the doping density of the gain implant. For a
fixed depth of the boron profile, 2 µm, the implant dose has been varied from 100%
to 85%. As the acceptor density becomes lower, the gain decreases. These predic-
tions quantitatively depend on the avalanche model: in this example, the Massey
(black curves) model gives higher gain with respect to the Okuto-Crowell model
(grey curves).

One important ingredient of the UFSD design is simulating the effects of radi-
ation on the detector performances. To this aim, it is necessary to account for the
doping creation and deactivation, both in the gain implant and in the bulk, and the



72 An Introduction to Ultra-Fast Silicon Detectors

Figure 3.12 Left: gain implant dose versus gain implant depth, needed to have G = 20 at
V = 200 V. Right: gain as a function of the bias voltage, calculated with the Massey (black)
and Okuto-Crowell model (grey), for a gain implant depth of 2 µm and four different doses of
gain implant doping.

additional generation mechanism due to surface/oxide radiation damage de-
scribed. This can be done, for instance, through the Perugia model. By using
the van Overstraeten-de Man formalism for the avalanche, it has been possible
to reproduce the experimental data shown in the left panel of Fig. 3.13, where
the collected charge in a UFSD device is plotted as a function of the bias, be-
fore irradiation and at two fluences. The numerical prediction is quite satisfac-
tory, also in consideration of the changes induced by a temperature variation

Figure 3.13 Left: number of collected charges versus bias for a 300 µm-thick UFSD before
and after irradiation. Right: bias values needed to collect 2 ·104 electrons as a function of the
fluence in 50 µm-thick UFSDs from different vendors [52].
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(293 K vs 263 K), confirming the robustness of the TCAD approach in terms
of radiation-hardness. Finally, in the right panel of Fig. 3.13, the measured and
simulated bias to collect 2 · 104 electrons versus fluence is reported for sev-
eral 50 µm-thick UFSDs. Here all the three avalanche models have been tested,
obtaining that – as in the simulation of gain as a function of temperature –
the Okuto–Crowell model is the worst choice to reproduce this set of measurements.

3.6 RESISTIVE AC-COUPLED SILICON DETECTORS DESIGN
As explained above, the UFSD design is optimized to achieve the best temporal reso-
lution. Consequently, the signals generated by particles hitting in the inter-pad region
should not be amplified to avoid out-of-time signals (see Section 2.8). The no-gain
region decreases the detector fill factor and leads to the use of multiple staggered
layers to achieve hermetic coverage. A possible strategy to overcome this issue is
the AC-LGAD [61] paradigm, which consists in the implementation of a continu-
ous gain implant that achieves 100% fill factor, as shown in Fig. 3.14. In order to

Figure 3.14 Schematic cross-section (not to scale) of an RSD (AC-LGAD) sensor.

reconstruct the hit position without segmentation, AC-LGADs make use of two key
design elements: (i) a coupling oxide and (ii) a resistive n+-cathode. For the signal
to be visible on the AC-pads, both elements need to be correctly engineered so that
the lowest impedance path to ground for the signal is via the read-out electronics.
The signal discharges with an RC time constant given by the product of the AC-pad
capacitance and the n+-cathode resistivity. Thus, since the target is to have a dis-
charge time long enough for the signal to be seen by the pads, the RC time constant
must be chosen to be longer than the signal formation time (∼ 1 – 2 ns). However,
to avoid pile-up effects, the RC should be sufficiently short to allow a prompt return
to the baseline. The most important parameters are the oxide composition and thick-
ness, determining the coupling strength, and the n+ implant dose and profile, which
instead directly modify the resistivity of the cathode. The geometrical configuration
of the AC-pads (e.g., dimension and pitch) is also decisive since their geometrical
dimension directly impacts the RC time constant. Given the large number of param-
eters concurring in the AC-LGADs design, it is crucial to have a reliable numerical
tool for the prediction of signal formation and read-out properties.

In the last few years, several research groups began to develop and also fabricate
AC-LGADs. In this chapter, a specific design, produced by INFN in Torino (Italy)
and FBK, called Resistive AC-Coupled Silicon Detectors (RSD), is explained. The
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name, RSD, refers to its two main features: the resistive implant and the coupling
oxide. Here, some parametric simulations referring to standard values are shown in
order to demonstrate how TCAD can help in the design of such devices. To this
aim, the impact of varying the RSD design parameters on the signal waveform is
analyzed. Several simulated signals produced by a MIP in an RSD are reported in
Fig. 3.15. In these results, the detector is composed of a row of three AC-pads, and
the particle is always crossing the device in the center of the first pad and black, grey,
and light grey lines refer, respectively, to the signal seen in the hit pad, its first and
second neighbor pad. The preliminary observation coming from the simulations is
that the current as a function of time has a bipolar behaviour, an intrinsic feature of
the AC-coupled read-out paradigm.

The first lobe is generated by the coupling with the AC-pads, when the signal is
collected by the resistive n+-cathode, while the opposite lobe is due to their subse-
quent discharge to ground, which takes place through the DC-contact (see Fig. 3.14).
The discharge characteristics – such as the amplitude and duration – depend on the
RC constant of the equivalent read-out circuit, so, on the coupling capacitance of the
oxide layer and on the sheet resistance of the cathode. The second fundamental obser-
vation is that the signal is shared among several pads. Such effect, besides the 100%
fill factor, represents the most important difference between the RSD paradigm and
standard UFSDs, where the signal is visible only on one pad. This difference leads
to a clear advantage in the accuracy of position reconstruction: combining the infor-
mation of many pads, the impact position can be identified with the precision of a
few microns [55, 58]. As for the other figures of merit related to the signals, also the
charge sharing depends on the properties of both the coupling oxide and the resistive
implant.

The top left and top right panels of Figure 3.15 report the signals simulated with
a 2D TCAD implementation, injecting 1 MIP in a 50 µm-pitch RSD device with
45 µm pad size. First of all, consider only the pad hit directly by the particle (black
curves). The solid lines show the signals obtained implementing the standard values
of the FBK technological parameters (low oxide thickness and low n+-cathode dose).
The dotted lines, instead, refer to an increase of either the oxide thickness (top left)
or cathode resistivity (top right). The simulations show that both the peak amplitude
and the discharge duration increase when the oxide is thinner (higher capacitance) or
the n+-cathode dose decreases (higher resistivity). The signals seen on the first and
second neighboring pad, respectively in grey and light grey, have the same behaviour.
The simulation, therefore, indicates that if the RC time constant is too short, the
signal discharges before being fully formed.

The bottom left panel of Fig. 3.15 shows a different scenario. In this plot, the
same RSD geometry of the previous simulations is compared to a modified version,
where the pitch is doubled and the pad size is 95 µm. Moreover, the fabrication
technology has been slightly changed, a 50% thicker oxide has been used. Focusing
again on the signals coming from the pad crossed by the particle (black lines), it is
evident that the bigger pad has a larger signal. Considering the adjacent pads, the
first and second neighboring pads in the 100 µm-pitch RSD produce a signal which
is lower in amplitude and broadened in time with respect to the 50 µm-pitch case.
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Figure 3.15 Simulated signals in a three-pads RSD detector, biased at 300 V, at room tem-
perature. Black lines represent the signal coming from the hit pad, while the different tones
of grey refer to the first and second neighboring pad. Top left: signals in two RSDs differ-
ing for the thickness of the coupling oxide. Top right: signals in two RSDs differing for the
n+-cathode resistivity. Bottom left: signals in two RSDs differing for the sensor pitch. Bottom
right: signals generated using either a 2D or 3D simulation [54].

Another important result stressing the importance of numerical simulations is
presented in the bottom right panel of Fig. 3.15. In this plot, the 2D and 3D imple-
mentations of a 60 µm-pitch RSD are compared. Here the resistive n+-cathode dose
is the standard one, while the oxide has been chosen in its thick version. In these
simulations, all the pads have in common the same behaviour: the signals computed
with the 3D structure are slightly lower and longer with respect to the 2D case. Even
if in the 2D condition the tool emulates the 3D scenario projecting the third dimen-
sion by a customizable factor, the full-3D simulation takes into account additional
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built-in volume-related physical effects that originate the observed differences in the
signals.

This example is very instructive from the numerical standpoint since it well rep-
resents the importance of choosing the most appropriate framework according to the
target of the simulation. If the 2D geometry is sufficient to reproduce the electrical
behaviour of a UFSD, or its gain curve, the 3D implementation is necessary to study
the transient phenomena generating induced signals in RSD detectors.

To conclude this short overview of the RSD design, the effects of the termination
structures present at the borders of the RSD, in correspondence of the DC-contact (as
shown in Fig. 3.14), are presented. To understand the edge effect in RSD, consider

Figure 3.16 Left: electric field in a 1×3 array of a 50 µm-pitch RSD, with 45 µm pad size,
biased at 160 V. The MIP has been injected in positions A and B. Right: simulated signals seen
on the DC contact of the same device as a function of the distance from the sensor edge [54].

the simulation of a 1× 3 array with 50 µm-pitch and 45 µm pad size through a 2D
implementation again. A MIP is injected in the first pad, 5 µm from its left edge,
and in the third one, 5 µm before its end. The electric field beneath the silicon/oxide
interface as a function of position is reported in the left panel of Fig. 3.16. At small
x values, where the DC-contact is located, the field is of the order of few tens of kV.
Then, the field experiences a steep increase, starting at the edge of the multiplication
implant, located at 30 µm from the origin (the greater the lateral spread of this im-
plant, the earlier the field increase). Past this sharp rise, the field increases slowly: at
the point A, at 40 µm, is 394 kV/cm while at the point B, at 175 µm, is 404 kV/cm.
The right panel reports the simulated signals collected by the DC-contact at 160 V,
when the MIP crosses the device in A and B. The inset drawing shows the cross-
sectional view of the simulated RSD, as well as the two tracks crossing the detector
perpendicularly to the surface. The signal from A arrives earlier than that from B,
since the discharge path from the hit point to the contact is shorter, however, the
number of collected charges is smaller (respectively, 1.6 against 5.4 · 104 electrons)
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since the multiplication field is lower in A than in B. This simulation highlights that
termination structures may affect the detector response, creating an area of lower
gain at the periphery of the active region. This is why numerical simulations are
essential in designing the RSD and, in particular, in defining specific layout rules,
such as the minimum distance between the peripheral pads and the gain implant
edge.
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