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Summary

[. Overview of semiconductor devices
* The pn junction

M. Mandurrino (INFN-To) “From the pn junction to the UFSD design”, Torino —9.05.19



Characteristic equations of the pn junction

= Definition: the pn junction is a semiconductor region where a p-type and
an n-type doped materials are placed side by side.

= Example: the abrupt junction of two uniformly doped semiconductors.
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qy 1s the electronic affinity (~4.05 eV in Si)
q® is the semiconductor work function
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Characteristic equations of the pn junction

" Golden-rules to compute the final band-diagram:

1. E, and gy are conserved by definition;
2. Eg must be constant across the junction;
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3. E, and bands must be continuous functions (in space x).
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Characteristic equations of the pn junction

* The gradient of carriers concentration produces a transient, in which electrons
travel from the n-side to the p-side (the vice-versa holds for holes). This
mechanism behaves as a diffusion-like dynamics

= The diffusion of free charges depletes a zone across the junction, called space-
charge region (SCR), where fixed charges (ionized atoms) are no more
compensated by free charges (p#0). Far from the junction, we still have
compensation (neutral regions, p=0)
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Characteristic equations of the pn junction

= Within the space-charge region (p#0) the field is not a constant and
bands are no more straight lines. In particular, due to the Poisson
equation of semiconductors

d*U p
dz? . €
where U = —q 1s the potential energy felt by free charges, we have
P
gNy
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Characteristic equations of the pn junction

= So, finally we have:
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Characteristic equations of the pn junction

What we concluded has several important physical implications:
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1. £ # 0 implies the onset of a drift current
of carriers tending to compensate the
diffusion of free charges such that J = 0;

2. A built-in potential ¢V}, created across

the junction, represents an additional
barrier for the diffusion of electrons
towards the p-side (and holes in the n-side)
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Characteristic equations of the pn junction

What we concluded has several important physical implications:
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By integrating the Poisson equation, and
thanks to the neutrality law Nax, = Npz,,
one has
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Characteristic equations of the pn junction

> What happens if the junction is no more at equilibrium?
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= electrons from n- to p-side = electrons from p- to n-side
= holes from p- to n-side " holes from n- to p-side

" gV <qly " qV>qly
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Characteristic equations of the pn junction

> What happens if the junction is no more at equilibrium?
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Characteristic equations of the pn junction

= pn junction at equilibrium:
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Characteristic equations of the pn junction

= pn junction in reverse polarization: P n
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Characteristic equations of the pn junction

= pn junction in forward polarization: P
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Summary

I. Overview of semiconductor devices
* The pn junction
* Low Gain Avalanche Detectors (LGAD)
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Towards a technological step...

first n-p-n “tip”’-transistor Ultra Fast Silicon Detector

J. Bardeen, W. Brattain, W. Shockley UFSD Group
Bell Labs. - NJ INFN Torino and FBK Trento
(1948) (2018)
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Extending our application domain to other systems

pn junction pin diode LGAD
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Working principles of an LGAD

= How large the external biasing voltage has to be?
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Working principles of an LGAD

> What is charge multiplication in LGAD?
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Primary charges (electron/hole pairs) are produced by ionization, while the
particle is crossing the sensor;

Due to the reverse field, electrons drift towards the n-side and holes
towards the p-side;

When electrons travel along the p* region (the gain- or multiplication-layer)
they experience an high field;

This field 1s responsible for the impact ionization, which produces an
avalanche multiplication of secondary charges;

Now the total current is due to the additional avalanche contribution.
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Working principles of an LGAD

> Why using LGAD to detect particles at CERN?

I
I. We need charge multiplication: thin thick

1. LGAD exploit the so-called avalanche multiplication, a process
which belongs to the class of generation/recombination (GR)
mechanisms;

t

2. Charge multiplication allows to obtain large and fast signals:

 the thinner the sensor, the faster the signal;
 the higher the gain, the larger the signal.

II. We need a good S/N:

1. Also the noise related to the current signal is proportional to the gain

2. The gain G has to be kept as low as required by electronics (G ~ 10-20)
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Working principles of an LGAD

> Why using LGAD to detect particles at CERN?

Examples of 50 um LGAD performance:

reverse current & gain versus bias V current signal (test beam (@ CERN-HS)
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Working principles of an LGAD

> Can we predict the avalanche contribution to the total current?

Let’s introduce a bit of physical-mathematics...

1. The avalanche process is modeled via its ionization coefficient ¢, 1.e.
the inverse of the electron/hole mean free path (cm™);

2. In the literature, several expressions of a are available. In general, all of
them are based on the Chynoweth’s theory (1958), according to which:

B p
an,p(g) — 7A71,p exXp <—A/' 5'1 )

3. Once the coefficient has been obtained, one has to evaluate the net
avalanche generation rate U, ,,, 1.e. the number of multiplied e /h*
pairs per volume (cm—) per unit time (s™'), as:

Ut == @:d—p:a NVn + Qppv
ava dt dt nitUn ApFVUp
.. Now we need a complete description of the system!
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Electronic device modeling - 1

= We recall the twofold nature of the current in a semiconductor device:

a. Drift current, driven by the electric field,
b. Diffusion current, due to the density gradient of free charges.
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ox ox
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Electronic device modeling - 1

= To derive the global current density (field + charge + GR):

1. ina volume dV = Adx the time variation of the electron density (similarly for holes)

1S
field + charge GR
on k2 Jo(z +dx J,,(x)
Q-Adzzr = <1)A— (= + T)A+G,V,Ad:1:—R,-,Ad:r Hg A
ot —q —q
J,(x+dx)

N
x+dx

2. by using the 1%%-order Taylor series expansion

0 ']n
ox

Jo(x +dx) = J,(x) + dz

and assuming dx — 0, we obtain the continuity equations:
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Electronic device modeling - 1

= Since the drift component depends on the electric field, we need a third
equation to close the system, the Poisson equation, which connects the

field to the charge densities.
The final (1D) mathematical framework is:

on  10J,

e = = ik
o ot q Ox "
continuity egs. , )
dp  10J, [ DRIFT-DIFFUSION
ot qox P MODEL (DD)
. o p
Poisson eq. —= —— =
or €
Where z],, = (]/,I,.,,"I'I..g + (]D,,,a—lll- . ,]1) — (IILI)])E — (ID/)% TRANSPORT EQS.
/L oz
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Electronic device modeling - 1

= Avalanche generation is not the only GR mechanism occurring in silicon
devices. In general, we have to account for two different families:

A. Band-to-band generation/recombination E,
E~t-----1 -

E

Vv

gen. ric.

B. Defect-assisted generation/recombination E,
EFi_' _______ -l

E

V

gen. ric.
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Electronic device modeling - 1

= Avalanche generation is not the only GR mechanism occurring in silicon
devices. In general, we have to account for two different families:

A. Band-to-band generation/recombination

o Auger
o direct tunneling
o ..




Electronic device modeling - 1

= Avalanche generation is not the only GR mechanism occurring in silicon
devices. In general, we have to account for two different families:

B. Defect-assisted generation/recombination

o Shockley-Read-Hall (SRH) . - E
o trap-assisted tunneling ?
o ..




Electronic device modeling - 1

= SRH processes are determined by such a net rate statistics

np — n?

L"SI{II — Ij”tl'.'—lp‘ [;‘1’ 1‘]‘1 s litravp
| n+n;e kBT + 7| p+n;e *BT

where 7, , are proper electron/hole lifetimes, i.e. the average time interval
(~1077-107 s) between two consecutive scattering processes originating
(or annihilating) e /h" pairs.

= Moreover, band-to-band tunneling is modeled with the usual Kane
expression (1961)

(-"’rlunn =A 52 - €Xp (_B/g)

with 4 and B (V/cm) material-dependent parameters.
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Electronic device modeling - 11

> We need a method to compute the DD model

0 10.J,

_n — _a = Un
ot q Ox

Op 105

el A 1
ot q Ox !
e @

Or €

where ¢ is the input function, n, p and £ are the unknowns of the con-
tinuity equations and where the Poisson equation closes the system.

> We have to solve a set of non-linear, secondary-order PDEs, in space
and time, for the whole device!
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Electronic device modeling - 11

= The strategy

* Dynamics (bias ramps, transients, ...) is treated as a sequence of small increments between
stationary states at equilibrium: the quasi-stationary process;

* At each quasi-stationary step the mathematics has to be simplified through proper
approximations and algorithms:

g
s 1. the geometry is discretized (e.g.: Delaunay-Voronoi procedure)
o FEEEEsEEE @ 2. DD system is rewritten and adapted to the mesh grid
SESSISIRSRSRSEE 3. PDEs are linearized and transformed into ODEs (FD schemes)
iz RS 4. 1.C. and B.C. are defined
»:' SR € 5. the new DD model is solved via iterative methods (Newton) in all
:- --; ! --; ! --; ! --; ! --; mesh nodes
(]

M. Mandurrino (INFN-To) “From the pn junction to the UFSD design”, Torino —9.05.19 34



Electronic device modeling - 11

1. The geometry is discretized (e.g.: Delaunay-Voronoi procedure)

design of nodes

creation of
non-obtuse triangles

creation of boxes

O mesh nodes

Delaunay triangles
e box contour J-J—Tb,p are Conserved

""""" Z°r°n°'f grid at boxes interfaces
[0).4
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Electronic device modeling - 11

2. Drift-Diffusion system is rewritten and adapted to the mesh grid

scalar/vector operators
and constants are
transformed:

L4 / zds = 0z Si

ot ot
s

]{FL dy = Zlij (F1)i
7

r
/cds =815

O mesh nodes S
Delaunay triangles

————box contour .
-------- Voronoi grid by averaging the

box in/out quantities at
each box side, they are
computed at nodes
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Electronic device modeling - 11

3. PDEs are linearized and transformed into ODEs (FD schemes)

FD central differences + Scharfetter-Gummel scheme

10.J,
q Ox
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Electronic device modeling - 11

4. 1I.C. and B.C. are defined

Initial Conditions: starting polarization at contacts

Boundary Conditions:

n Op(r, t 0o(r, t :
ana(ll’t) =0, ()p(gI; ) =0 and d(ba(ll‘ ) = Neumann homogeneous (insulators, external edges,...)
n n n
1 0o(r,t) on(r,t)
n I',t nf—::Dn rA}
(r,2) o on on
OP(r,t op(r,t
< Pl t) s Gb(fg—“) =—D, péﬁ ) Neumann non-homogeneous (dielectrics)
0¢(r,t) ‘ 9¢(r, t)
Es Bh = €diel 7
on |y
( ) + 4n? + Z Ci(r )
< ( Dirichlet non-homogeneous (contacts)
ZC*Q ) + 4n? —zCirf
= Vhias(t) + const.
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Electronic device modeling - 11

TCAD procedure for each node:

a) Choose a maximum number of iterations # _,, and a tolerance &
b) Impose proper I.C. and B.C.
¢) Start from an initial guess ¢ for the electrostatic potential
d) The equilibrium solution ¢ is obtained by solving only the Poisson equation with
the I.C. and B.C.
If we have to perform a voltage ramp or a transient:

d) each step i of the ramp (with i =1,...,N) is treated as a quasi-stationary state. The
potential resulting from the Poisson solution at equilibrium ¢, is used as initial guess
for solving the DD equations at steps i > 1

If the solution 1s found within the maximum number of iterations #_, and
with an error smaller than the tolerance &, then the system converges and the
scheme go further, otherwise:

» The pitch of the steps Ai is decreased
= The tolerance ¢ is increased

= [fthe alternatives above fails, then the method is aborted
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Electronic device modeling - 11

I.C. || B.C. tolerance | #,_, iterations

QD’ Poisson equation || init. guess | Drift-Diffusion eqs. | i=N E
0 @ equilibrium i Po @i>1 | Py
{ i=1,...N-1 Y
E | P
| no :
. : convergence @ : 8N
mesh, doping ! | Sy
i / yes :
! Pi+1 |
INITIAL SOLUTION QUASI-STATIONARY PROCESS FINAL SOLUTION
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Design and simulation of LGAD

> Why LGAD are so innovative?

Large signals coupled with low Gain = high S/N
Fast signals = high time resolution

Simple design — low production cost

Huge ongoing R&D = radiation hardness

MTD design overview

CMS

ans

e Thin layer between tracker and calorimeters
e MIP sensitivity with time resolution of ~30 ps
e Hermetic coverage for |n|<3

M. Mandurrino (INFN-To)

Coverage
Surface Area
Power Budget
Radiation Dose
Installation Date

Endcap

LGAD

1.5< |n < 3.0
~ 12 m?

~1.8 kW/m?

< 2e15 neq/cm®
2024
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Design and simulation of LGAD

» How a real LGAD module is made?

LGAD module
CMS ETL 96 mm .~

15"“!

e
e
2>

g
wu 8¢

first 4x24 pixel
demonstrator in 2018

| .
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Design and simulation of LGAD

» How a real LGAD module is made?

Three main R&D areas s

1. Study of detector static/dynamic characteristics: /(V), G(V), C(V), ... Il
2. Analysis about the internal electric fields: efficiency issues, ... - -
3. Radiation tolerance

M. Mandurrino (INFN-To) “From the pn junction to the UFSD design”, Torino —9.05.19 44



Design and simulation of LGAD

1. Study of detector static/dynamic characteristics: /(V), G(V), C(V), ...

C(V) curves
25 e 1000 : » 5
—@— dose: 2.65 E
- gain layer f
20l —@— dose; 2.50 depletion
B
15¢ =
z g
) g
i3
1ot 50 yum LGAD :i. 50 um LGAD bulk (full)
ST depletion
|—— W06 - sim.| /
3 | * W06 - exp.
—— W15 - sim.
@ 300K | @ WlS-cxpl_
1 L ' 1 1 1 l " A A ' J
50 100 150 200 250 300 350 0 10 20 30 40 50

reverse bias, V | Reverse bias [V]
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Design and simulation of LGAD

2. Analysis about the internal electric fields: efficiency issues, ...

dead space ~5%

collected charges

position
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Design and simulation of LGAD

2. Analysis about the internal electric fields: efficiency issues, ...

= Two main strategies:

a. layout scaling

T

Y

h-._
- . -
S
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Design and simulation of LGAD

2. Analysis about the internal electric fields: efficiency issues, ...

= Two main strategies:

a. layout scaling

padl pad2
GR pstop pstop

L
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Design and simulation of LGAD

2. Analysis about the internal electric fields: efficiency issues, ...

= Two main strategies:

b. implement a new readout approach

capacitive l
oxide pad
RN

! + resistive
FF

p n

p-Si

A= N
R[%%gg INFN R[%%gg INFN \
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Design and simulation of LGAD

3. Radiation tolerance

empirical acceptor removal/creation law

HL-LHC fluence
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Design and simulation of LGAD

3. Radiation tolerance

empirical acceptor removal/creation law
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Design and simulation of LGAD

1. Study of detector static/dynamic characteristics: 1(V), G(V), C(V), ...
+

2. Analysis about the internal electric fields: efficiency issues, ...
+

3. Radiation tolerance

Wafer # Gain dose Carbon 2 T

0.98 e
1.00 => T
1.00 f
1.00 low =
1.00 High — T —

1.+ 3. 1.02 low

=> 1.02 High
1.02

1.02

|
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Design and simulation of LGAD
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Design and simulation of LGAD

oo

NI,

ST

ovr e ey

e v v v v v

de vvve vy

ey

borsr s oy

ey

S

v e

e v rv v e

YRy

RO

AU

S

S

e S

o

o

{

OSSO s vy vr2 oy vy
X ]
>y R &
- picacaceracs "
¥
o oy s e
s I
X %
TR NIRRT NN NN RN A AN EEEEETETEy
RN LTI iU, L o
o
% 4] B
§ 5
R ey 5 2 avy v ~
s ‘s
¥ ¥ g
TR R
o
15 43 4

i3

M. Mandurrino (INFN-To)

“From the pn junction to the UFSD design”, Torino —9.05.19

p-stop
n-plus

| n-deep

. gain

! contatti

| metal

1 overglass

54



Design and simulation of LGAD

1. Study of detector static/dynamic characteristics: 1(V), G(V), C(V), ...
+

2. Analysis about the internal electric fields: efficiency issues, ...
+

3. Radiation tolerance

Wafer # Gain dose Carbon ’ 2

0.98 ’
1.00 =>
1.00
1.00 low
1.00 High

1.+ 3. 1.02 low

=> 1.02 High
1.02

1.02
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LGAD production: the complete workflow!

[ theory & ]— simulation —[ layout & ]—[ test run ]
concept de51gn

c . . lab & rad
production optimization simulation ! i -
testing

[ installation ]
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Contacts and Info

Marco Mandurrino, Ph.D.

Office: Via P. Giuria 1, 10125 Torino
New building, 4™ floor, room D22
(+39-011-670)-7400

E-mail: marco.mandurrino [at] to.infn.it
marco.mandurrino [at] cern.ch

e CMS
0000 INFN pa
|:| . UFSD Istituto Nazionale di Fisica Nucleare A »\\ ] \‘

= To download this presentation and for more info about simulation: http://personalpages.to.infn.it/~mandurri/teaching.html
= About the RSD experiment: http://personalpages.to.infn.it/~mandurri/rsdproject.html
= Master Thesis Proposal: http://personalpages.to.infn.it/~mandurri/teaching/Proposta_di_Tesi LM RSD.pdf
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